
姓 名 | 洪佩龙 |
性 别 | 男 |
出生年月 | 1986年12月 |
学 位 | 博士 |
职 称 | 副教授 |
E-mail | p.l.hong@aqnu.edu.cn |
一、个人简介:
洪佩龙,博士,副教授,硕士生导师。本科和博士毕业于南开大学。2016年在荷兰University of Twente从事博士后研究(合作导师:美国物理学会及光学学会会士Willem Vos教授)。2023年7月,入职安庆师范大学从事教学科研工作。主要从事复杂光学系统中光场性质、调控及相关光子学应用研究,相关成果发表在Optica、Opto-Electronic Advances、Physical Review A/B/Applied、Applied Physics Letters、Optics Letters等国内外重要学术刊物上。主持国家自然科学基金青年项目、四川省自然科学基金面上项目、安徽省优秀青年教师培育项目、弱光非线性光子学教育部重点实验室开放课题等课题。主讲的《应用光学》获评四川省一流本科课程。
二、主讲课程:
《光学B》(邓稼先实验班)、《大学物理》、《大学物理及实验》等。
三、研究方向:
(1)光学微结构的模场特性及调控研究
光学微结构通过亚波长尺度光场调控,突破光输运及光局域的极限,为集成光子学、非线性光学及传感技术提供了新方法。近年来,我们聚焦于谐振光子结构增强光学非线性效应(Opto-Electron. Adv. 5, 200097 (2022); Opt. Lett. 47, 2326 (2022) Editor’s Pick)、莫尔超晶格的能带调控(Adv. Photon. Nexus 2, 066001 (2023),SPIE Newsroom以“Navigating moiré physics and photonics with band offset tuning”为题做亮点报道)及谐振光子晶格中的光散射效应(Opt. Lett. 49, 2553 (2024) Editor’s Pick)等,推动微结构中多维光场调控技术及新型光子器件的发展。

(2)散射光场的调控研究
散射光场调控旨在克服无序介质中光传输的随机畸变,实现光能量的定向传输与精准操控,是生物医学成像、光通信及量子光学等领域中的关键技术。传统方法依赖弹道光子提取,但强散射环境下效率受限,波前整形与透射矩阵等技术的突破为散射光子调控提供了新途径。近年来,我们聚焦于三维无序介质光输运调控(Optica 5, 844 (2018))、奇异散射通道(Phys. Rev. A 106, 063502 (2022))及新型波前整形技术(Opt. Laser Technol. 176, 110939(2024))的研究,并拓展光散射的光子学应用研究。

(3)高性能光学成像及光操控技术
特异结构光场的相干调控通过挖掘光场的时空、统计等特性,突破传统光学成像与操控的物理极限,为超分辨显微、量子关联成像及光镊技术等提供了新机遇。近年来,我们聚焦于超分辨成像技术(Appl. Phys. Lett. 113, 101109 (2018);Opt. Lett. 44, 1754 (2019))、三维显微单像素成像(Phys. Rev. A 105, 023506 (2022))及基于结构光的新型光镊(Phys. Rev. Applied 19, 014016 (2023))等,不断提高光学成像及光操控技术的性能和应用范围。

四、部分实验平台展示
实验室每年招收5-6名本科生进行创新实验,欢迎积极主动、有科研兴趣、有探索精神的同学联系。

五、代表性论文:
[1] P. Hong*, M. Yi, L. Zhang, Y. Liang*, G. Zhang, Long-range correlation of transmitted light through transmission eigenchannels in disordered media. Phys. Rev. B 111, 024202 (2025).
[2] X. Xia, Q. Liu, B. Zou, P. Hong*, Y. Liang*, Disorder effects on flatbands in moiré superlattices. Opt. Lett. 49, 2553 (2024). Editor's Pick
[3] P. Hong*, Y. Liang*, Z. Chen, G. Zhang, Robust moiré flatbands within a broad band-offset range. Adv. Photon. Nexus 2, 066001 (2023). 期刊亮点推荐、SPIE Newsroom亮点报导
[4] P. Hong*, L. Xu*, M. Rahmani, Dual bound states in the continuum enhanced second harmonic generation with transition metal dichalcogenides monolayer. Opto-Electron. Adv. 5, 200097 (2022).
[5] P. Hong, O. Ojambati, A. Lagendijk, A. Mosk, W. Vos*, Three-dimensional spatially resolved optical energy density enhanced by wavefront shaping. Optica 5, 844 (2018).
六、论文列表:
[1] P. Hong*, M. Yi, L. Zhang, Y. Liang*, G. Zhang, Long-range correlation of transmitted light through transmission eigenchannels in disordered media. Phys. Rev. B 111, 024202 (2025).
[2] X. Liang, L. Tian, P. Zhang, K. Chen, B. Zou, P. Hong*, Y.-X. Ren, Y. Liang*, Nonlinear self-trapping and fluorescence excitation in Chlorophyll solution. Chaos, Solitons & Fractals 196, 116380 (2025).
[3] X. Lu, P. Zhang, H. Wu, J. Yu, P. Chen, B. Zou, P. Hong*, Y. Ren*, Y. Liang*, Efficient optical trapping force tuning for cusp-catastrophe autofocusing beams using deep neural networks. Appl. Phys. Lett. 126, 021104 (2025).
[4] L. Tian, X. Liang, P. Zhang, K. Chen, H. Chen, B. Zou, P. Hong*, Y. Ren, Y. Liang*, Quasi-Waveguiding and Topological Charge Detection of Vortex Beams Via Chlorophyll-Induced Thermal Nonlinearity. J. Lightwave Technol. (2025).
[5] P. Zhang, K. Chen, C. Zhang, J. Liang, S. Deng, P. Hong*, B. Zou, Y. Liang*, Caustic analysis of partially coherent self-accelerating beams: Investigating self-healing properties. Phys. Rev. A 109, 043529 (2024).
[6] X. Xia, Q. Liu, B. Zou, P. Hong*, Y. Liang*, Disorder effects on flatbands in moiré superlattices. Opt. Lett. 49, 2553 (2024). Editor's Pick
[7] P. Hong*, Y. Liang*, G. Zhang, Robust multiple focusing through scattering media via feedback wavefront shaping. Opt. Laser Technol. 176, 110939 (2024).
[8] P. Hong*, M. Yi, L. Zhang, Y. Liang, High-quality flatband resonances in few-cell moiré superlattices by band-offset tuning. Appl. Phys. Lett. 124, 18 (2024). AIP Publishing官方公众号发文推荐
[9] H. Wu, L. Tan, H. Huang, X. Lu, H. Liang, T. Lin, B. Zou, P. Hong*, Y. Ren*, Y. Liang*, Reconfigurable manipulation of perovskite nanoparticles with a cusp-catastrophe Bessel beam. Phys. Rev. Appl. 21, 054038 (2024).
[10] D. Liu, N. Liu, L. Tan, K. Chen, X. Lin, P. Hong*, H. Huang, B. Zou, Y. Liang*, Controllable multi-autofocusing of chirped multi-Pearcey beams and their trapping performance on Rayleigh particles. Opt. Laser Technol. 179, 111335 (2024).
[11] N. Liu, L. Tan, K. Chen, P. Hong, X. Mo, B. Zou, Y. Ren, Y. Liang*, Robust autofocusing propagation in turbulence. Chin. Phys. B 33, 064201 (2024).
[12] Y. Liang*, L. Tan, N. Liu, K. Chen, H. Liang, H. Wu, B. Luo, F. Lu, H. Chen, B. Zou, P. Hong*, Tunable autofocusing and enhanced trapping forces with Circular Pearcey Airy Beams. Phys. Rev. Appl. 19, 014016 (2023).
[13] P. Hong*, Y. Liang*, Z. Chen, G. Zhang, Robust moiré flatbands within a broad band-offset range. Adv. Photon. Nexus 2, 066001 (2023). 期刊亮点推荐、SPIE Newsroom亮点报导
[14] K. Chen, P. Zhang, N. Liu, L. Tan, P. Hong*, B. Zou, J. Xu, Y. Liang*, Controllable nonlinear propagation of partially incoherent Airy beams. Opt. Express 31, 22569 (2023).
[15] L. Tan, N. Liu, F. Lu, D. Liu, B. Yu, Y. Li, H. Wu, K. Chen, Y. Chu, P. Hong*, Y. Liang*, Quantitative characterization of autofocusing and trapping of multi-Airy vortex beams. Phys. Rev. A 107, 043501 (2023).
[16] J. Huang, X. Lin, S. Huang, M. Yao, D. Ning, K. Chen, P. Zhang, P. Hong*, Y. Liang*, Quantitative analysis of the synthetic food colorants with optical nonlinearity. Optik 276, 170653 (2023).
[17] X. Lu, L. Tan, N. Liu, C. Chen, K. Chen, H. Wu, X. Xia, P. Zhang, P. Hong, B. Zou, Y. Liang*, Optical trapping performance of circular Pearcey beams on Mie particles. Phys. Rev. A 108, 063509 (2023).
[18] P. Hong*, L. Xu*, M. Rahmani, Dual bound states in the continuum enhanced second harmonic generation with transition metal dichalcogenides monolayer. Opto-Electron. Adv. 5, 200097 (2022).
[19] P. Hong*, Y. Liang*, Three-dimensional microscopic single-pixel imaging with chaotic light. Phys. Rev. A 105, 023506 (2022).
[20] P. Hong*, W. Vos*, Controlled light scattering of a single nanoparticle by wave-front shaping. Phys. Rev. A 106, 063502 (2022).
[21] P. Hong*, L. Xu*, C. Ying, M. Rahmani, Flatband mode in photonic moiré superlattice for boosting second-harmonic generation with monolayer van der Waals crystals. Opt. Lett. 47, 2326 (2022). Editor's Pick
[22] P. Hong*, Two-photon scattering effect of a single Mie scatterer. J. Opt. Soc. Am. B 38, 3723 (2021).
[23] P. Hong*, Tailoring complex wavefront of scattered light via wavefront shaping. J. Opt. 22, 035604 (2020).
[24] P. Hong*, G. Zhang*, A Review of Super-Resolution Imaging through Optical High-Order Interference [Invited]. Appl. Sci. 9, 1166 (2019).
[25] P. Hong*, Sub-Rayleigh single-pixel imaging via optical fluctuation. Opt. Lett. 44, 1754 (2019).
[26] L. Li, P. Hong, G. Zhang*, Transverse revival and fractional revival of the Hanbury Brown and Twiss bunching effect with discrete chaotic light. Phys. Rev. A 99, 023848 (2019).
[27] F. Mariani, W. Loeffler, M. Aas, O. Ojambati, P. Hong, W. Vos, M. van Exter*, Scattering media characterization with phase-only wavefront modulation. Opt. Express 26, 2369 (2018).
[28] P. Hong*, Two-photon imaging assisted by a thin dynamic scattering layer. Appl. Phys. Lett. 113, 101109 (2018).
[29] P. Hong, O. Ojambati, A. Lagendijk, A. Mosk, W. Vos*, Three-dimensional spatially resolved optical energy density enhanced by wavefront shaping. Optica 5, 844 (2018).
[30] L. Li, P. Hong, G. Zhang*, Experimental realization of Heisenberg-limit resolution imaging through a phase-controlled screen with classical light. Opt. Express 26, 18950 (2018).
[31] P. Hong*, G. Zhang, Heisenberg-resolution imaging through a phase-controlled screen. Opt. Express 25, 22789 (2017).
[32] P. Hong, O. Ojambati, A. Lagendijk, A. Mosk, W. Vos, Looking inside a 3D scattering medium to observe the 3D spatially-resolved optical energy density that is enhanced by wavefront shaping. Eur. Quantum Electron. Conf. EG_2_3 (2017).
[33] P. Hong, L. Li, J. Liu, G. Zhang*, Active control on high-order coherence and statistic characterization on random phase fluctuation of two classical point sources. Sci. Rep. 6, 23614 (2016).
[34] P. Hong*, G. Zhang*, Super-resolved optical lithography with phase controlled source. Phys. Rev. A 91, 053830 (2015).
[35] P. Hong*, G. Zhang, Synchronous position two-photon interference of random-phase grating. J. Opt. Soc. Am. A 32, 1256 (2015).
[36] L. Xu, H. Yang, P. Hong, F. Bo, J. Xu, G. Zhang*, Lensless imaging based on coherent backscattering in random media. AIP Adv. 4, 8 (2014).
[37] P. Hong, L. Xu, Z. Zhai, G. Zhang*, High visibility two-photon interference with classical light. Opt. Express 21, 14056 (2013).
[38] P. Hong, G. Zhang*, Subwavelength interference with an effective entangled source. Phys. Rev. A 88, 043838 (2013).
[39] P. Hong, G. Zhang, Subwavelength interference with classical light. Int. Quantum Electron. Conf. IA_P_29 (2013).
[40] P. Hong, J. Liu, G. Zhang*, Two-photon super bunching of thermal light. Front. Opt. FTh3E-6 (2012).
[41] P. Hong, J. Liu, G. Zhang*, Two-photon superbunching of thermal light via multiple two-photon path interference. Phys. Rev. A 86, 013807 (2012).